6,703 research outputs found

    Transient thermal performance prediction method for parabolic trough solar collector under fluctuating solar radiation

    Get PDF
    As the effect of the global warming is becoming noticeable, the importance for environmental sustainability has been raised. Parabolic trough solar thermal collector system, which is one of the solutions to reduce the carbon dioxide emission, is a mature technology for electricity generation. Malaysia is a tropical country with long daytime, which makes suitable for solar thermal applications with parabolic trough solar thermal collectors. However, the high humidity causes the solar radiation to fluctuate. In order to simulate the solar thermal collectors’ performance at an early design stage of solar thermal power generation systems, fast still accurate transient thermal performance prediction methodis required. Although multiple transient thermal simulation methodologies exist, they are not suited especially at an early design stage where quick but reasonably accurate thermal performance prediction is needed because of their long calculation time. In this paper, a transient thermal prediction method is developed to predict exit temperature of parabolic trough collectors under fluctuating solar radiation. The method is governed by simple summation operations and requires much less calculating time than the existing numerical methods. If the radiation heat loss at the parabolic trough collector tube surface is small, the working fluid temperature rise may be approximated as proportional to the receiving heat flux. The fluctuating solar radiation is considered as a series of heat flux pulses applied for a short period of time. The time dependent solar collector exit temperature is approximated by superimposing the exit temperature rise caused by each heat flux pulse. To demonstrate the capabilities of the proposed methodology, the solar collector exit temperature for one-day operation is predicted. The predicted solar collector exit temperature captures the trend of a finite element analysis result well. Still, the largest temperature difference is 38.8K and accuracy is not satisfactory. Currently, the accuracy of the proposed method is being improved. At the same time, its capabilities are being expanded

    A review on intelligent sensory modelling

    Get PDF
    Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. Classically, factorial multivariate methods such as Principle Component Analysis (PCA), Partial Least Square (PLS) method, Multiple Regression (MLR) method and Response Surface Method (RSM) are the common tools used to analyse sensory data. These methods can model some of the sensory data but may not be robust enough to analyse nonlinear data. In these situations, intelligent modelling techniques such as Fuzzy Logic and Artificial neural network (ANNs) emerged to solve the vagueness and uncertainty of sensory data. This paper outlines literature of intelligent sensory modelling on sensory data analysis

    OPTIMIZATION OF SCREEN PRINTED REFERENCE ELECTRODE BASED ON CHARGE BALANCE AND POLY (BUTYL ACRYLATE) PHOTOCURABLE MEBRANE

    Get PDF
    This research focus on transforming the traditional design of reference electrode into all-solid-state reference electrode front-end using Ag/AgCl screen- printed electrodes. By replacing the internal reference solution of a traditional reference electrode by a solid photocurable membrane, an all-solid-state reference electrode can be achieved. The solid-state screen-printed reference electrode was designed using a photocurable acrylic film containing immobilized sodium tetrakis [3,5-bis(trifluoromethyl)phenyl] borate (NaTFPB) and trimethylocthylammonium chloride (TOMA-Cl). An optimum ratio of NaTFPB:TOMA-Cl = 1:1 produced a stable reference electrode. In the anions interference studies, all anions i.e. NO3-, Cl-, Br- and SO42- does not give effect to the SPRE except perchlorate anions. The all-solid-state reference electrodes was applied to the detection of potassium ions and ammonium ions. Validation of the all-screen-printed reference electrode was performed with reference electrode standard gel type. The validation results showed that all-solid-state screen-printed reference electrode demonstrated performance that was comparable to standard reference electrode

    OPTIMIZATION OF SCREEN PRINTED REFERENCE ELECTRODE BASED ON CHARGE BALANCE AND POLY (BUTYL ACRYLATE) PHOTOCURABLE MEBRANE

    Get PDF
    This research focus on transforming the traditional design of reference electrode into all-solid-state reference electrode front-end using Ag/AgCl screen- printed electrodes. By replacing the internal reference solution of a traditional reference electrode by a solid photocurable membrane, an all-solid-state reference electrode can be achieved. The solid-state screen-printed reference electrode was designed using a photocurable acrylic film containing immobilized sodium tetrakis [3,5-bis(trifluoromethyl)phenyl] borate (NaTFPB) and trimethylocthylammonium chloride (TOMA-Cl). An optimum ratio of NaTFPB:TOMA-Cl = 1:1 produced a stable reference electrode. In the anions interference studies, all anions i.e. NO3-, Cl-, Br- and SO42- does not give effect to the SPRE except perchlorate anions. The all-solid-state reference electrodes was applied to the detection of potassium ions  and ammonium ions. Validation of the all-screen-printed reference electrode was performed with reference electrode standard gel type. The validation results showed that all-solid-state screen-printed reference electrode demonstrated performance that was comparable to standard reference electrode.

    Daylight performance through different types of glazing in the tropics

    Get PDF
    Having glazing on buildings will allow natural daylighting in a room. There are four types of glazing which are commonly used in the market today: Clear, light green, bronze and black float glass where tinted glazing will provide shading to the interior. These four glass are being tested using Integrated Environmental Solutions Virtual Environment (IESVE) software with different proportion to investigate the influence of arrangements of glazing to permit daylight and to serve as shading device. There are 40 combinations of different glazing proportion tested in the simulation. The combination of 75 % clear float glass on a green float glass base gives the highest lux value at a point 90cm from the opening whereas the lowest value is exhibited through a 25% green float glass with a black float glass base of 75%. The finding shows that glazing with lower Visual Light Transmittance as the base will give a lower Daylight Factor compared to using it on top of the other glazing. Furthermore, although there is a large contrast of Daylight Factor between the 0.9m and 3.6m depth, several combination of glazing achieved the requirement of Malaysian Standard 1525 for daylighting in office

    Generalized thermo vacuum state derived by the partial trace method

    Full text link
    By virtue of the technique of integration within an ordered product (IWOP) of operators we present a new approach for deriving generalized thermo vacuum state which is simpler in form that the result by using the Umezawa-Takahashi approach, in this way the thermo field dynamics can be developed. Applications of the new state are discussed.Comment: 5 pages, no figure, revtex

    Strong decays of heavy baryons in Bethe-Salpeter formalism

    Full text link
    In this paper we study the properties of diquarks (composed of uu and/or dd quarks) in the Bethe-Salpeter formalism under the covariant instantaneous approximation. We calculate their BS wave functions and study their effective interaction with the pion. Using the effective coupling constant among the diquarks and the pion, in the heavy quark limit mQm_Q\to\infty, we calculate the decay widths of ΣQ()\Sigma_Q^{(*)} (Q=c,bQ=c,b) in the BS formalism under the covariant instantaneous approximation and then give predictions of the decay widths Γ(Σb()Λb+π)\Gamma(\Sigma_b^{(*)}\to\Lambda_b+\pi).Comment: 41 pages, 1 figure, LaTex2e, typos correcte

    Coupled KdV equations derived from atmospherical dynamics

    Full text link
    Some types of coupled Korteweg de-Vries (KdV) equations are derived from an atmospheric dynamical system. In the derivation procedure, an unreasonable yy-average trick (which is usually adopted in literature) is removed. The derived models are classified via Painlev\'e test. Three types of τ\tau-function solutions and multiple soliton solutions of the models are explicitly given by means of the exact solutions of the usual KdV equation. It is also interesting that for a non-Painlev\'e integrable coupled KdV system there may be multiple soliton solutions.Comment: 19 pages, 2 figure

    The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Patterning for Flexible Electronics

    Get PDF
    The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication
    corecore